
I don't feel so well
Integrating health checks in your .NET solutions

Alex Thissen
Cloud architect

Follow along: https://github.com/alexthissen/HealthMonitoring

https://github.com/alexthissen/HealthMonitoring

Challenges for large-scale distributed systems

Keeping entire system running

Determine state of entire system and intervene

How to know health status of individual services?

Collecting/correlating performance and health data
Events, metrics, telemetry, logs, traces

Usually centralized in a distributed landscape, e.g. micro-services

Sentry.ioRaygun.io RunscopeNewRelic AlertSite DataDogAppMetrics Azure Monitor

Application instrumentation

Three signals for observability

Collect Monitor

Logging

Tracing

Metrics

Dashboards

Alerting

Analytics

Profiling

Metrics
streaming

Traditional medicine and health

Centralized
Single point that knows how to
assess health

Challenging
Combining measurements to
health information

Based on generic types of
measured values

Absence of measurements

Differences in behavior from
person to person

Unknown internals

Multiple places to access health

Doctor, am I sick?
12:34

Let's look at your vitals we
measured earlier:
- Pulse 60 per minute
- Blood pressure 130/80

12:34

Looks fine to me.
It seems you are healthy. 12:35

Thanks, doctor!
12:36

Let's look at your vitals we
measured:
- Pulse 180 per minute
- Blood pressure 150/110

12:34

Does not look good.
It seems you are unhealthy. 12:35

Modern medicine and health

Self-assessment
Determing your own health status

Know what defines healthy and
unhealthy

Context matters
Measurements might need to be
interpreted differently

Depending on:

Situation

Circumstances

Unmeasurable values

You know best

Let's see. My vitals say:
- Pulse 180 per minute
- Blood pressure 150/110

12:34

How are you doing today?
12:36

Does not look good.
It seems I am unhealthy.

12:34

Oops, we need to do
something about that!

3:24

Good to know.
Stay healthy! 12:36

It's okay, as I am working out now
My back does not hurt.
So, I'm healthy!

12:34

Difference between metrics and health info

Metrics
Many individual measured values and counts
of events

Watch performance and trends

Useful for diagnostics and troubleshooting

Logic external to origin

Health
Intrinsic knowledge of implementation
required

DevOps mindset:

Logic to determine health is part of origin

Deployed together, good for autonomy

metrics health info

Your
app

Your
app

Monitor &
Analytics

Application instrumentation

Collect Monitor

Logging

Tracing

Metrics

Dashboards

Alerting

Analytics

Profiling

Metrics
streaming

Health

Levels of health instrumentation

Availability
Any response

Status code indication

Formal endpoints

Latency
Time to respond

Internals
Memory

Disk space

Simple
Advanced

External dependencies
URL endpoints (e.g. Web API or CDN)

Databases

Service bus or queue

Storage

Readiness & liveness
Distinguish startup and normal operation

Good for external lifetime management

Preventive

Predicting
Indication of impending failure

Interesting with AI and ML

Examples
Expiring certificates

Trends in memory pressure

Failing resiliency
countermeasures

Health status

Healthy

200 OK

"Everything is fine"

Degraded

200 OK

"Could be doing better
or about to become
unhealthy"

Unhealthy

503 Service
Unavailable

"Not able to perform"

ASP.NET Core application

/api/v1/…
Application

implementation
Middle
ware

Integrating health checks

Available since .NET Core 2.2
Available to all .NET applications

Plugs deep into ASP.NET Core

Bootstrap health checks in
ASP.NET Core app
Dependency injection

ASP.NET Core middleware routing

builder.Services.AddHealthChecks();

app.MapHealthChecks("/health);

/health DefaultHealthCheckService

Microsoft.Extensions.Diagnostics.HealthChecks

 .Abstractions

 .EntityFramework

Microsoft.AspNetCore.Diagnostics.HealthChecks

M
id

d
le

w
a
re

Using health checks

What?

When?
On demand from endpoints

Periodically by publishers

How?
Iterating over health check registrations

public interface IHealthCheck
{
 Task<HealthCheckResult> CheckHealthAsync(
 HealthCheckContext context,
 CancellationToken cancellationToken = default);
}

From:

https://github.com/dotnet/aspnetcore/blob/main/src/HealthChecks/

Abstractions/src/HealthReport.cs

Integrating health checks

builder.Services
 .AddHealthChecks()
 .AddCheck("sync", () => …)
 .AddAsyncCheck("async", async () => …)
 .AddCheck<SqlConnectionHealthCheck>("SQL")
 .AddCheck<UrlHealthCheck>("URL");

ASP.NET Core application

/health

DefaultHealthCheckServiceMiddle
ware

Sync SQL URLAsync
Health
checks

H
e
a
lth

 re
p

o
rt

URLSQL

GET

500

Details

Demo

ASP.NET Core 8.0
Health object model
Health checks
Endpoints

Only 1 out-of-box check
Entity Framework DbContext

Build your own
Delegate for sync or async factory

Implementation of IHealthCheck

Community packages

Xabaril/BeatPulse
System (Disk Storage, Memory)

Network (Tcp, Ftp, Sftp, Imap, Smtp, Dns resolve)

Azure Storage (Blobs, Tables and Queues)

Azure Service Bus (Event Hub, Service Bus
queues and topics), SignalR

RabbitMQ

Kafka

Redis

Elasticsearch

EventStore

Identity Server

AWS DynamoDB

Yours?

Custom health checks

SqlServer

MongoDb

Oracle

DocumentDb

MySQL

SqLite

Postgress Sql

AspNetCore.Diagnostics.HealthChecks.*

Microsoft.Extensions.Diagnostics.

HealthChecks.EntityFrameworkCore

services.AddHealthChecks()
 .AddDbContextCheck<GamingDbContext>("EF")

Beyond the basics

Register multiple health endpoints
Order of registrations matters

Middleware options
Change HTTP status codes per health result

Allow client-side caching

Change response writing

Predicate for filtering health checks to evaluate

Register custom health check as singleton

/api/v1/…

/health

/ping

builder.Services.AddSingleton<KafkaHealthCheck>());
builder.Services.AddSingleton(new SqlConnectionHealthCheck(
 new SqlConnection(Configuration.GetConnectionString("MyDB"))));

Xabaril BeatPulse AspNetCore.HealthChecks.UI

Host in ASP.NET Core application

Run from Docker container

Visualizing health checks
1. Customize health endpoint output for more details

Specify delegate from HealthCheckOptions.ResponseWriter

2. Query endpoint(s)

3. Build user interface

Demo

A bit more advanced healthchecks

Monitoring health

 Endpoints Frequency Locations Alerts

Health check publishers

Pushes out health
info periodically

Options
Timeout: max time to execute check

Delay: time to wait after startup

Period: period of execution

Predicate: Filter for checks to execute

ASP.NET Core application

DefaultHealthCheckServiceMiddle
ware

HealthCheckPublisher
HostedService

Injected IEnumerable<IHealthCheckPublisher>

AppInsights
Publisher

Seq
Publisher

builder.Services.AddHealthChecks()
 .AddApplicationInsightsPublisher()
 .AddSeqPublisher(options =>
 options.Endpoint = "http://seq:5341"
); Registers IHealthCheckPublisher

Demo

Health publishers
Prometheus

Performance
Metrics

Instrumentation

Monitoring
Health endpoint monitoring

Alerts

Availability
Zero-downtime upgrades

Readiness

Liveliness

Resilient and self-healing applications

Resiliency
Use cloud patterns:

Circuit Breaker

Timeout

Retry

Probing containers to check for availability and health

Readiness and liveness

Kubernetes node

Kubernetes node
Kubernetes nodes

Pod

Pod

R
e
p

lica
 se

t

Containers

k8s-deployment.yaml

Readiness
Ready to receive
incoming traffic

Not ready:
remove container
from load balancer

Liveness
Indicates when to
restart a container

Implementing readiness and liveness

1. Add health checks with tags

2. Register multiple endpoints
with filter using
Options predicate

/api/v1/…

/health

/health/ready

/health/lively

app.UseHealthChecks("/health/ready",
 new HealthCheckOptions() {
 Predicate = reg => reg.Tags.Contains("ready")
});

services.AddHealthChecks()
 .AddCheck<CircuitBreakerHealthCheck>(
 "circuitbreakers",
 tags: new string[] { "ready" });

Remember:
Order of registration
mattersapp.UseHealthChecks("/health/lively",

 new HealthCheckOptions() {
 Predicate = _ => true
});

Zero downtime deployments

Original pods only taken offline after new healthy one is up

Allows roll forward upgrades: Never roll back to previous version

Pod v1 Pod v1 Pod v1 Pod v2 Pod v2Pod v2Pod v2 Pod v2Pod v2

Demo

Readiness and liveliness probes
Docker containers
Kubernetes

.NET Aspire

“An opinionated, cloud ready stack for
building observable, production ready,
distributed applications”

Orchestration Components Observability

Composition

Service discovery

Connection string
management

Health checks in .NET Aspire

Default health check “self”
Simple check for liveness with tag “live”

Maps two (extra) health endpoints
For development environment only

Components can add health checks

/health

/alive

builder.AddNpgsqlDbContext<MyDbContext>(
 "postgresdb",
 static settings => settings.DisableHealthChecks = true);

Demo

Demo

.NET application

Postgres Seq

Register
Health
checks /health

/alive

/healthmetrics

.NET Aspire AppHost
Aspire.Hosting.PostgreSQL

Aspire.Hosting.Seq

Aspire.Npgsql

Aspire.Seq

Securing

Expose as little detail as possible

Use different internal port
Inside a cluster ports are not exposed by default

Leverage notion of a management port

Add authentication using
middleware

Publish instead of endpoint

app.MapHealthChecks("/securehealth",
 new HealthCheckOptions() {
 Predicate = _ => false
 }).RequireAuthorization();

Best practices

1. Assume degraded state

2. Set short timeouts on checks
Inside health checks and for publishers

For example, when connecting to external dependencies

3. Avoid complicated health checks

4. Register health checks as singletons in DI

5. Reason about which health checks to use

Summary

/api/v1/…

/health

/ping

Questions and Answers
Alex Thissen
@alexthissen
alex.thissen@xebia.com

https://github.com/alexthissen/HealthMonitoring

Resources

ASP.NET Core Health monitoring
https://docs.microsoft.com/en-us/azure/architecture/patterns/health-endpoint-monitoring

https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks

https://github.com/aspnet/Diagnostics/tree/master/src

Kubernetes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

BeatPulse Xabaril
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks

Demo source code
https://github.com/alexthissen/healthmonitoring

http://visualstudio.com/
http://visualstudio.com/
http://visualstudio.com/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks
https://github.com/alexthissen/healthmonitoring

	Opening
	Slide 1: I don't feel so well Integrating health checks in your .NET solutions

	Introduction
	Slide 2: Challenges for large-scale distributed systems
	Slide 3: Application instrumentation
	Slide 4: Traditional medicine and health
	Slide 5: Modern medicine and health
	Slide 6: Difference between metrics and health info
	Slide 7: Application instrumentation
	Slide 8: Levels of health instrumentation
	Slide 9: Health status

	ASP.NET Core
	Slide 10: Integrating health checks
	Slide 11: Using health checks
	Slide 12: Integrating health checks
	Slide 13: Demo ASP.NET Core 8.0 Health object model Health checks Endpoints

	Advanced
	Slide 14: Custom health checks
	Slide 15: Beyond the basics
	Slide 16: Visualizing health checks
	Slide 17: Demo A bit more advanced healthchecks

	Monitoring
	Slide 18: Monitoring health

	Publishers
	Slide 19: Health check publishers
	Slide 22: Demo Health publishers Prometheus

	Container orchestrators
	Slide 23: Resilient and self-healing applications
	Slide 24: Readiness and liveness
	Slide 25: Implementing readiness and liveness
	Slide 26: Zero downtime deployments
	Slide 27: Demo Readiness and liveliness probes Docker containers Kubernetes
	Slide 28: .NET Aspire
	Slide 29: Health checks in .NET Aspire
	Slide 30: Demo
	Slide 31: Securing
	Slide 32: Best practices

	Wrap Up
	Slide 33: Summary
	Slide 34: Questions and Answers
	Slide 35: Resources

